百科问答小站 logo
百科问答小站 font logo



范特霍夫(van't Hoff)等温式在起始的时候产物还没生成,分压为零,那ln函数不就无意义了吗? 第1页

  

user avatar   huang-he-54-47 网友的相关建议: 
      

没错,而且这种情况deltaG就无法定义了

deltaG的意义一定要明确:某个温度T下,一个无限体系保持反应各组分浓度不变,进行1mol反应的G变化量;或者一个有限体系进行一个dksi反应进度,dG/dksi。总而言之相比物理概念更像一个数学概念

因为如果某个组分浓度是0,或者dn,都是没有热力学意义的,热力学的定律是统计结果,不适用于粒子数过低的场景


user avatar   xiao-xuan-zhong-86 网友的相关建议: 
      

挺有趣的问题,先来看一下van't Hoff等温式怎么来的,来自《新概念物理·热学》p219.

所以后面对数的那一项来自修正项-TΔS,进一步说来自混合熵公式中的 项。起始的时候反应物还没生成,混合熵公式中不会有对应的对数项。但只要生成一个分子,就有熵的贡献了,所以不用讨论无穷小、有无意义之类的问题。

(0805, @Triborg 老师说的对,我把自己绕进去了,经典化学热力学是从静态的角度去研究反应的,只讨论过程的起始状态与终结状态,非平衡状态下讨论热力学参数没有意义。说起始状态下各个反应物相当于被隔开,没有产物的贡献,足以。截图上反应物相关的表达式也足够解释了,后面的一分子之类的说法忽略。)

这个问题还能从另外的一个角度思考。

考虑气体的化学势公式 ,产物还没有形成的时候,p=0,这个式子会不会因为ln0而无意义?不会,因为没有形成这个化合物,怎么谈化学势嘛。

可以再去思考一下,玻尔兹曼熵公式中S=klnΩ,Ω会不会等于0。


user avatar   yongle-li-86 网友的相关建议: 
      

这两天备课“化学势”,看了点朗道的书,难免就被带得往那边偏了。但不得不承认,朗道式思想确实好用!

  1. 首先,没平衡的时候,不能应用热力学!书中的公式完全不成立。任何公式都是有前提条件的。这个问题反映出提问者的热力学的基本假设没学明白,靠刷题是无法真正理解一套理论的。我昨天讲的的时候,听到有学生窃窃私语:“我电动力学没学,靠刷习题册过的考试”。这种学习方法让我非常震惊。曹原开发魔角石墨烯有习题集吗?爱因斯坦提出相对论,是因为他有一本”相对论习题集“,他把习题集刷到100分,然后就提出相对论了吗?世界上舍本逐末的事情还真是多啊。。。。。。

2. 考虑一下平衡的时候会发生的情况。根据半经典的统计力学理论,化学势来自于:

对于理想气体,有:

换用温度和压强作为自变量,就有:

从这个地方可见, ,化学势趋于负无穷。貌似出现了反直觉的效果。

但是,这里有个问题,就是保持温度不变,压强要降低,必须改变体积。而保持温度不变改变体积不能让体积无限膨胀下去,因为要有环境给它供热。

另一种思路是保持体积不变,用改变温度的方法改变压强。我的经验是, 和温度成简单幂次关系,这时候,把化学势里的温度用压强和体积表示,有:

而在有限的幂次下,有: ,即化学势仍然是有限的。

3. 另外,根据上述讨论,保持体积不变令 时,温度也趋近于零。由于零点能的存在,温度不会降到绝对零度,同理压强也不会降为零。而且这时候需要考虑全同粒子性,并考虑讨论的是玻色子还是费米子。对于理想费米子气体,其零温下化学势存在极大值;而对于理想玻色子,由于玻色-爱因斯坦凝聚的存在,其极限值为 。总之是不会跑到无穷大去。

图来自于文献:G. Cook & R. H. Dickerson, “Understanding the Chemical Potential”, Am. J. Phys. 63, 737 (1995)

4. 对于光子,由于粒子数不守恒,其化学势一直为零。

5. 还有如果粒子数过少,热力学公式就失效,回到经典力学或量子力学。




  

相关话题

  超理论坛是个怎样的论坛? 
  溶液的稀释原理是什么? 
  硼有焰色反应吗? 
  为什么我们经常听说高锰酸钾,却很少听说高锰酸钠? 
  如果忽视伦理道德的制约全力进行科学研究,现在的科学水平可能高出几个层次么? 
  家里没什么背景不能接受低工资但是很热爱化学怎么办,该去读化学类的专业吗? 
  在AIChe上发三篇论文足够申请MIT的博士后吗? 
  物理、化学的意义只存在于书本上吗? 
  为什么氢氟酸能和玻璃反应,而其他的强酸如硫酸盐酸不能和玻璃反应。是不是因为该反应与酸性无关原理是什么? 
  为什么一个氨气可以形成六个氢键? 

前一个讨论
假如真的发现了能量不守恒现象,是否有可能获得诺贝尔奖?
下一个讨论
如何理解傅里叶光学?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利