百科问答小站 logo
百科问答小站 font logo



假设所有游戏都关了,学生们都会学习吗? 第4页

           

user avatar   bo-ai-zhi-cheng 网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar   m3xiao-mo-gu 网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar   kuoluoo 网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar   qinlili233 网友的相关建议: 
      

因为环保。

之前买笔记本电脑的时候除了纸质说明书以外还有不少纸质文件,而且包装盒巨大,大量使用泡沫作为甚至还有内嵌包装盒。

我当时买的笔记本送的16开100多页的说明书,其中篇幅最大的是如何使用Windows系统[1]

除此之外还有保修卡,售后网点,装箱单等各种纸质文件。

除去纸质文件还有若干光盘,有系统镜像,驱动包等等。

如今的电子产品,包括手机和笔记本电脑,包装在不断缩小纸质文件越来越少,光盘被取代之后厂商也不怎么送了。

这样一来节省了大量的木材等资源的同时避免了像泡沫填充物和光盘这种有害垃圾的产生,而且从效果上看比不送充电器/数据线要好很多,因为消费者为失去的东西投入的成本可以忽略不计。

其实我本意是想讽刺一下这些手机厂商的,可是没想到某个官方账号出了点问题,紧跟时事了属于是。

说明书的变化是由以前的几十上百页变成了一张“快速使用指南”,同时这些产品开始内置说明书pdf或者在官网提供pdf下载。


ipad mini5的说明书,已经变成了一张纸

r9000p的说明书。

惠普1040g4的说明书。

苹果各种产品的说明书,由于众所周知的原因,国区只能去官网查看。


看到有人提到了使用技巧,

其实这东西和ios的贴士差不多,但是内容更详细[2]

其实更多情况下用到的是获取帮助,这个是系统自带的,而且在win10里有时候按f1会直接弹出来。

此外还有一个反馈中心,对于系统有什么建议可以提出来,要知道win10的农历就是这么来的:

微软社区和网页版的帮助中心,善用这两个网页可以解决大多数windows系统的问题。

考虑到题主 @六经注我 属于从来没用过电脑的,我还是多写两句吧,希望能有所帮助。

参考

  1. ^ 其他系统的也有,如dos,linux,但是只有寥寥几页
  2. ^ 和windows相对于的强大功能相比其实也没详细到哪去。

user avatar   sigon-55 网友的相关建议: 
      哪些交往中的小技巧比如沟通做事方式等能够保护自己不受他人欺负?
user avatar   johnson-rock 网友的相关建议: 
      

这是我看到的最准确的总结。

总的来说,就是中国的高考相对公平,所以性价比极高,所以其他活动都可以适当让步。


user avatar   windskymagic 网友的相关建议: 
      


user avatar   kun-yu 网友的相关建议: 
      

说实话你们所谓的“许多人都会争论”只存在与你们自己的想象中,还有知乎这种人比较多但是垂直领域不行的地方。


user avatar   77qiqidao 网友的相关建议: 
      

所以为什么生了不养?




           

相关话题

  《魔兽世界》中纯DPS职业是否真有必要设计三套天赋? 
  刺客信条系列里展现的古代城市、古代建筑是否严谨?与真实的历史有多少出入? 
  帝国时代2里哪个战役剧情给你留下了深刻印象? 
  为什么任天堂一直不将自己的游戏放到 iOS 和 Android 上? 
  对于疑似游戏抄袭行为,为什么原厂商常常无动于衷,而玩家或网友会激烈批评? 
  乐动卓越公司怎么样? 
  如果能穿越到游戏《战神》里,你最想选择哪个角色,为什么? 
  如何看待 Steam 最近爆出的 0day 漏洞? 
  假如我策划一款良心网游,放弃氪金,只为玩家着想,请问会大火吗? 
  只允许带价值十元钱的现代物品穿越,怎么能混的风生水起? 

前一个讨论
这样我真的不适合做律师吗?
下一个讨论
阿里女员工第二天为什么联系华联的张某?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利