百科问答小站 logo
百科问答小站 font logo



验证集loss上升,准确率却上升该如何理解? 第1页

  

user avatar   virter 网友的相关建议: 
      

如题主自己回复,这种情况是由于模型得到的结果过于极端(自信)导致,上几张图,题主的情况应该和我下面情况差不多:

可以看到随着迭代增加ValidationLoss越来越大快跑飞了,不过准确率却逐渐平稳变化不大。而且验证集的准确率最高点也出现在先下降后上升区间。实际上准确率最高点(10 epoch左右)的预测结果是这样的:

而训练200 epoch后的预测结果是这样的:

可以明显看出训练200轮后结果趋于极端,而这些极端的负面Loss拉大了总体Loss导致验证集Loss飙升。出现这种情况大多是训练集验证集数据分布不一致,或者训练集过小,未包含验证集中所有情况,也就是过拟合导致的。而解决这种现象可以尝试以下几种策略:

  1. 增加训练样本
  2. 增加正则项系数权重,减小过拟合
  3. 加入早停机制,ValLoss上升几个epoch直接停止
  4. 采用Focal Loss
  5. 加入Label Smoothing

不过个人感觉主要还是增加训练样本比较靠谱..而且不用太关心ValLoss,关注下ValAccuracy就好。我的这个实验虽然只训练10个epoch在验证集上的准确率高且ValLoss小,但在测试集上结果是巨差的,而训练200个epoch的模型ValLoss虽然巨高但测试集效果还不错。




  

相关话题

  word2vec有什么应用? 
  应届硕士毕业生如何拿到知名互联网公司算法岗(机器学习、数据挖掘、深度学习) offer? 
  国内 top2 高校研一在读,为什么感觉深度学习越学越懵? 
  如何进行图像模糊与清晰的分类? 
  能否把一个人的所有物理数据输入在一个模型里,然后计算他接下来的状态变化? 
  为何感觉“知识蒸馏”这几年没有什么成果? 
  如何简单形象又有趣地讲解神经网络是什么? 
  如何评价 MSRA 最新的 Deformable Convolutional Networks? 
  为何总感觉人工智能和神经科学(神经网络)被绑在一起? 
  如何评价openai的新工作DALL·E? 

前一个讨论
为什么学习深度学习感觉无法入门?
下一个讨论
联邦学习/联盟学习 (Federated Learning) 的发展现状及前景如何?





© 2025-06-15 - tinynew.org. All Rights Reserved.
© 2025-06-15 - tinynew.org. 保留所有权利