百科问答小站 logo
百科问答小站 font logo



如何看待Tensor Comprehensions?与TVM有何异同? 第1页

  

user avatar   crowowrk 网友的相关建议: 
      

目前的主要的差别在于代码生成技术路线上,TC采用了polyhedra model,目前TVM采用的还是schedule space模型。polyhedra model相对于schedule primitive更加自动化一些,在TVM过去的工作中我们只采用了比较简单的auto tuning,这一点是TVM未来可以向TC学习的地方。在性能上,就目前发布的结果来看TVM的技术路线还是有更好的性能,如何互相学习提高是未来TVM团队会努力的方向


TVM目前的主要关注点在后端支持以及在如何获得最好的性能,最近的新东西是如何对未来深度学习加速器的支持,有兴趣的同学可以看我们刚出来的论文 End-to-End Optimization Stack for Deep Learning 。TVM采取这一路线以达到最好的性能,并且进一步支持深度学习的加速器。


以上的评论适用于是对于两个项目当前状况。TC (tensor comprehension) 在早期内部开发的时候参考了TVM的设计。主要作者nicholas也参与了TVM的贡献。两个项目的技术路线不同,在一定程度上是互补的,未来相信会有更多有趣的东西出现。


总的来说自动生成高效代码这条技术路线的可行性随着大家的努力逐渐明朗,大家应该可以多来尝试使用交流。去年TVM在arm,mobile gpu和加速器都有一些结果,开源社区的同学也都找到了不错的去处,这个方向还有不少的东西可以研究,欢迎对深度学习系统和编译高性能计算感兴趣的同学联系我们参与一起来探索这个方向。




  

相关话题

  华为 P30 Pro 相机使用 AI 技术为拍摄的月亮增加细节是合理的吗? 
  未来几年,医学影像方面会被人工智能代替么? 
  请问人工神经网络中的activation function的作用具体是什么?为什么ReLu要好过于tanh和sigmoid function? 
  我们到底该不该继续发展人工智能? 
  马斯克的星链计划会对 5G 产生重大威胁吗? 
  如何评价哈工大的左旺孟老师? 
  如何评价 DeepMind 发表在 Nature 上的使用深度强化学习对托卡马克等离子体进行磁控制? 
  究竟什么是损失函数 loss function? 
  如何评价 UCLA 朱松纯教授近日访谈中对深度学习的批评? 
  全连接层的作用是什么? 

前一个讨论
哪些事是你当了领导才明白的?
下一个讨论
西方国家民众对自己国家的恶行是什么态度?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利